► Exercise 9-7

Let G be a graph of order 5 or more. Prove that at most one of G and \overline{G} is bipartite.

Proof. If G is not bipartite, then we have the desired result. Thus, we may assume that G is bipartite. Let V_1 and V_2 be two bipartition sets of G. Since the order of G is at least 5, at least one of V_1 and V_2 contains 3 or more vertices, say $|V_1| = p \ge 3$. Since the subgraph of \overline{G} induced by V_1 is the complete graph K_p and $p \ge 3$, it follows that \overline{G} contains a triangle. Since every bipartite graph has no odd cycles, \overline{G} is not bipartite. \Box