► Exercise 9-8

Let G be a self-complementary graph of order n = 4k, where $k \ge 1$. Let $U = \{v : \deg v \le n/2\}$ and $W = \{v : \deg v \ge n/2\}$. Prove that if |U| = |W|, then G contains no vertex v such that deg v = n/2.

Proof. In the proof, the degrees of a vertex v in G and in \overline{G} are denoted by $\deg_G v$ and $\deg_{\overline{G}} v$, respectively. Suppose that |W| = p. Then |U| = p. Consider a vertex $v \in W$. Then $\deg_G v \ge n/2$. Therefore, $\deg_{\overline{G}} v = (n-1) - \deg_G v \le (n-1) - n/2 = n/2 - 1$. Since there are p vertices v in G with $\deg_G v \ge n/2$, it implies that there are p vertices v in \overline{G} with $\deg_{\overline{G}} v \le n/2 - 1$. By the fact that G and \overline{G} are self-complementary, G contains p vertices with degree no more than n/2 - 1. Since |U| = p, it means that G contains p vertices with degree no more than n/2. It follows that there are no vertices v in G with $\deg_G v = n/2$.